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Abstract. The Hamilton function for the Toda chain with free boundaries is studied for 
different interaction and mass parameters. For certain systems the connection to simple 
Lie algebras is shown and the integrability is proved by constructing the corresponding 
Lax representations. For the four-particle system a Painlevt analysis is presented. 

1. Introduction 

In recent years the question of whether a given many-particle system is integrable or 
not has been studied intensively for various models. Although there exists no general 
method for an integrability test of a Hamiltonian system, there are some mathematical 
constructive methods for integrable systems (Ablowitz et a1 1978, 1980, Bogoyavlensky 
1976, Bountis et a1 1982, Dorizzi et a1 1983,1984, Grammaticos et a1 1983, Olshanetsky 
and Perelomov 1981, Ramani et a1 1982). In the following a one-dimensional discrete 
chain with exponential interaction (Toda lattice) is studied in some detail for free 
boundary conditions. The system has been investigated by Bogoyavlensky (1976) for 
periodic boundary conditions, and for equal masses it was shown by Moser (1975) 
that the lattice is integrable even for free boundaries. By integrability of a system of 
N degrees of freedom the existence of N analytic global integrals of motion which 
are in involution is implied (e.g. Thirring 1978). In this paper it will be proven by 
using group theoretical methods that for certain parameters the open end Toda chain 
is integrable. For the corresponding four-particle system we have verified that the 
method of the PainlevC property (Ablowitz et a1 1978, 1980) leads to the same 
integrability parameters. 

The Toda chain with alternating masses is known to be non-integrable and it was 
shown quite recently that its mixing behaviour in phase space may support the transfer 
of heat according to the Fourier law (Mokross and Buttner 1983). It is therefore 
interesting to know open end systems which are integrable in order to study the 
transition to non-integrability for such fundamental problems as the heat conduction. 

In 0 2 the results for the general N-particle chain are presented. In 0 3 certain 
scaling properties are discussed. In the appendix two special cases for a four- and 
five-particle system are treated by a Painlevi analysis and algebraic methods, respec- 
tively. 

2. The open end Toda chain 

In the following the Hamiltonian for N particles with free end boundary conditions 
is studied in detail. As parameters we have the different masses mi at each lattice site 
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i and the strength of the exponential interaction between neighbouring sites. With 
the displacement qi and the corresponding momentum pi the Hamiltonian is written as 

N-l  

H = C {pf/2mi+exP[&i(qi -qi+l)l/&i}+p%/2mN* (1) 
i = l  

For the following investigations it is useful to introduce the centre of mass coordinates 
as well as the relative displacements by a canonical transformation: 

In these variables the function H is transformed into 

H = M N p c / 2 +  E f ( m i + m i + t ) p i 2 / ( 2 m i m i + l )  
N-l  

i = l  

In a second step a scaling transformation is introduced: 

4:’ = q: -In ei - 1 / 2  I p:‘=ff PI t” = CY - IDt  

with CY = By this special scaling the masses m, and m2 are used as reference, 
but other choices are possible. The Hamiltonian is transformed to (neglecting the 
centre of mass motion) 

This Hamiltonian is now in a form which allows the application of theorem 1 from 
Bogoyavlensky (1976). From this theorem it follows that Hamiltonians of the form 

H = [~:1~+exp(q:)]  - p:IWIp:I+ - ~ ; ; 2 - ~ / 2  

are integrable, because they can be deduced from the Lie algebras AN-1, BN-1, C N - ,  
in case 1, 2 and 3, respectively. Note that the matrices M with elements mll = 2 a 8 / a l l ,  
where all is the coefficient of the momentum term p:’p; in (7), are just the Cartan 
matrices for AN-1, B N P l r  CN-l (e.g. Humphreys 1972). By comparison of (6) and (7) 
we arrive at the integrability conditions for the mass and coupling parameters. 

Case 1: 

case 1 i“ I t2 case 3 
case 2 (7) 

N-1 N-1 

Z=1 1 = 2  
+PN-I -Pk-2Pk-1 

Ef(m, + m,+,)m2 = 2 m , m , + l ~ 1 ~ 2  i = l , .  . . , N - 1  

E , E , - ~ ~ ~ =  M , E ~ E ~  i = 2 ,  . . . ,  N-1. (8) 
Case 2: 
For i = N - 1 the above condition is changed: 

&%-l(”-l+ m N ) m 2 =  m N - l m N ~ I ~ 2  EN-2EN-l m2 = ”-1 & I & * .  (9) 
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Case 3 :  
Again for i = N - 1 a change is necessary: 

&k-l("-1+ ")m2=4"-1"&1&2 E N - 2 E N - I  m2 = 2"-,&,&2. (10) 

It is obvious that the different cases are distinct mainly due to the boundary term for 
the Nth particle and the ( N  - 1)th interaction. 

By scaling this condition to the case m,  = E ,  = 1 which is always possible for a 
certain length and energy scale these relations can be reduced to the following condi- 
tions. 

Case 1 :  

mi = 2m2( 1 + m 2 ) / [  i - 1 - ( i  - 3 ) m 2 ] / [  i - ( i  -2 )m2 ]  i = l ,  . . . ,  N 

i = 2, . . . , N - 1. 
(11) 

= ( 1  + m 2 ) / [  i - ( i  -2 )mJ  

Since the mass parameters have to be positive, the value of m2 has to be in the interval: 
m2 E (0, 1 + 2/ ( N - 2)) .  

Case 2: 
There is only a change in the boundary term 

=2m2( 1 -t m2) / { (  1 - m2)[  N - 1 - ( N  - 3 ) m 2 ] }  

 EN-^ = (1 + m 2 ) / [  N - 1 - ( N  - 3)m2]  

and rn2€ (0, 1) .  

Case 3 :  

= 2m2( 1 + m z ) / { (  1 - m z ) [  N - 1 - ( N  - 3 )  m 2 ] )  

&NP1 =2 (  1 + m 2 ) / [  N - 1 - (  N -3 )m2 ]  

and m2e ( 0 , l ) .  

Lax form (with matrices L, B )  
In order to find the explicit representation of the equations of motion in the so-called 

dL/dt  = LB - BL (14) 

we can apply the general method exposed by Bogoyavlensky (1976) together with the 
well known matrix representations of the Lie algebras AN, BN, C N  (e.g. Gilmore 1974). 
The matrices L and B for case 1 are already known (Moser 1975). Setting li = exp( q:) /2 
for i = 1 ,  . . . , N - 1 and by scaling the momenta p: and the time t" by a factor d 2  the 
matrices L and B for case 2 are given by 

L = [  L1 L2 ] B = [  B, B2 ] 
L3 L4 B3 B4 

where L ,  is the N x N matrix 

1 P1 1112 0 . . . . . . . . . . . . , . . . . . . 
1, p2-p. 1212 0 . . . . . . . . . . . .  

12 p3-p2 1312 O . . .  . . . .  
. . . . . . , . . . . . . . . . . . .  IN-2 PN--1-PN-2 lN- l /2  
. . . . . . . . . .  . . . . . . . . . . . . . . . . . . . IN-l 0 
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and L4 is the ( N -  1) x ( N -  1) matrix 

. . . . . . . . . . . .  
. . . . .  

. (17)  

P N - 2 - P N - I  -1N-212 0. 

- I N - 2  P N - 3 - P N - 2  -1N-312 0 
. . . . . . . . . .  . . . . . -  I ,  p1-p2 -1112 
. . . . . . . . . . . . . . . . . . . . .  -11  -PI 

In addition L2 is an N x ( N  - 1) matrix with 

and L3 an ( N  - 1) x N matrix with 

The corresponding matrix B has the submatrices B 2 =  L2 and B3 = -L3.  The 
matrices B, and B4 are constructed from L ,  and L4 by neglecting the diagonal elements 
and changing the sign of the subdiagonal elements. The ( N  - 1) constants of motion 
Ik are then implicitly given by 

Ik = Tr( L Z k )  for k = l ,  . . . .  N-1. (20 )  

They follow from the theory of polynomial invariants (Chevalley 1955). For case 3 it 
is possible to construct similar matrices 

where L,  can be written in the form 

...................... 
. . . . . . . . . . . . .  

p1 1112 
I ,  p,-p1 1212.. 

. . . . . . . . . . . . .  I N - 3  P N - 2 - P N - 3  IN-2/2 L , =  [ 

..................... IN-2  2PN-I - P N - 2  

i, is related to L ,  by a reflection at the minor diagonal of L. Here the matrix L2 has 
here the dimension ( N  - 1) x ( N  - 1) and is defined by 

(L2)lj = IN-, Si,N-I S , , j -  (23 )  

L: is the transpose of L 2 .  The corresponding submatrices B ,  and B4 are constructed 
as in case 2. Furthermore, we have L2 = B2 and the constants of motion are constructed 
in the same way as above (20). 

Besides the general results for N-particle systems there may be additional integrable 
cases for certain finite numbers of particles that are related to exceptional Lie algebras. 
As an example we discuss in appendix 2 the five-particle system related to the algebra 
F4. 

3. Scaling properties 

For a special choice of parameters, the Hamiltonian for case 1 is identical to that of 
a chain with equal masses and equal interaction parameters. One arrives at mi = E ,  = 1 
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for m, = = 1 and m, = 1 :  

N N-1 

H = C ~ 5 / 2 +  C exp(q, - q,+, ) .  
I = ,  , = I  

One can show that the general Hamiltonian (1) can be transformed to (24) if the 
parameters m, and E, are chosen according to the integrability condition (8). The 
transformation is most readily defined in the variables 

b, = -Pz/2m, a,  = fexp[-&,(q,+, - 4i)/2I (25) 

and is 

b : =  C P ,  I ]  b 1 + 1 - J  
1 - 1  

a:  = a,a, 

where we have used 

PI,1 = El-1 a: = E,-l/m, for i > 2  

P l , 2  = P t - I , l  - & , - I  for i > 2  (27) 

P l , k  = P t - 1 . k - I  for k > 3 ,  i > 3 .  

The corresponding momenta and displacements are subject to the same equations of 
motion as those resulting from (24) .  

A similar transformation can be made for case 2 if one chooses m1 = c l  = 1 ,  mz = f .  
Then we have 

m I = 2 / i ( i + 1 )  E , - ,  = 2/ i  m N = 2 / N  (28) 

and each system which is integrable under case 2 can be transformed to this special 
case. We do not give here the details of the scaling transformation because they are 
quite similar to those discussed for case 1 ,  but note that this special choice of masses 
and interaction constants does not seem to be very physical since these parameters are 
site-dependent and decrease with increasing length of the chain. But for smaller systems 
like, for example, a four-particle Toda molecule (with open ends) case 2 and case 3 
represent interesting integrable systems where one can study the transition to non- 
integrability. The results for N = 3 are related to those of Bountis et aZ(1982), although 
there is an additional integrable case resulting from the algebra G, .  For the four-particle 
system it can be shown that an analysis of the PainlevC properties results in the same 
integrability conditions as found above (see appendix 1). 
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Appendix 1. Painleve analysis for the four-particle system 

In this appendix we represent a Painlevt analysis for the general four-particle system 
with exponential interaction and free boundaries. It shows that the algebraic methods 
discussed above support the analytic investigations at least for small numbers of 
particles. The general Hamiltonian is scaled to the form 

H = p:/2 + p:/2m2 + p:/2m3 + p:/2m4+ exp(q, - q2) 

+exp[-&l(q3 - qZ)I/&l +exp[-&Z(q4- q3)IIEZ. (Al . l )  

Introducing new variables 

b1= -PI12 b2 = -P2/2m2 b3 = -P3/2m3 b4 = -P4/2m4 

a 1 -1 -,exp[-(q,- 41)/21 
a -1 

a, = fexp[-e,(q3 - q2)/21 (A1.2) 

3 - 2exp[ - & 2 (  q4 - q3 )/2] 

one finds the equations of motion (neglecting centre of mass motion): 

U ,  = a,(b,- b,) 6, = 2a: (A1.3) 

U, = -&,a2[ b, + (m2 + m3)/ b2 + m4b4]m;’ (A1.4) 

6, = w 3 [ b 1 +  m2b2+(m3+ m4)b41/m3 6, = -2a:/ m,. (A1.5) 

Using the algorithm proposed by Ablowitz et a1 (1980) one has for the behaviour in 
the vicinity of a pole at t = to 

b2=2(a:-a:)/m, 

a, - a , F  a, - a,ry a3 - a3rz (A1.6) 

with r = t - t o .  
From the equations for b, and b, one finds 

(A1.7) r 2 z + l  b4 - b, - T 2 x + 1  

and three different cases for b,: 

( i )  y = x  b, - r 2 x + 1  

r2x+1 (ii) Y > X  b2 - 
(iii) Y < X  b, - r 2 y + 1 .  

Each of these splits in two different special cases: 

(ia) x =  y = 2 =  -1 (ib) x = y = - 1  and z > - 1  

(A1.8) 

(iia) x = z = - 1  and y >  -1 (iib) x = - 1  and y, z >  -1 (A1.9) 

(iiia) y = z = - 1  and x > - 1  (iiib) y = - 1  and x , z>-1 .  

A comparison of the coefficient for the leading terms yields relations between the 
exponents x, y, z and the parameters m2, m3, m4 and E , ,  E , .  Since the exponents have 
to be integers or half-integers (Bountis et a1 1982) and also the exponents of the 
resonances, one finds, after some tedious calculations, five integrability regions with 
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PainlevC properties. Two of these are equivalent, which can be seen by a rescaling 
transformation. The others are identical to those found by the algebraic analysis: 

1 + m 2  1+m2 
E 1  =- E,=- 

3 - m 2  2 - m ,  2 3 - m 2  
m3 m 4 = -  m2( 1 + m2) 

( a )  m3= 

(A1 . l o )  

1 + m 2  
E,=- 

1 - m ,  3 - m ,  
2 m3 ( b )  m 3 ,  as above m 4 = -  

2 ( 1 +  m2) 2m3 
1 - m ,  3 - m ,  * 

E 2  = (c )  m 3 ,  as above m 4 = -  

( A l . l l )  

(A l .12 )  

Appendix 2. Example of an exceptional Lie algebra 

The general results discussed above can be extended for a certain number of particles 
by the use of exceptional Lie algebras. As an example we discuss the relation between 
F4 and a five-particle system (with fixed centre of mass). From the Cartan matrix for 
F4 one can conclude that the Hamiltonian 

H = P :  + P :  + 2P: + 2P: -P1 P2 - 2P2P3 - 2P3P4 

+exP(q,)+exP(qz)+exP(q3)+exP(q4) (A2.1)  
describes an integrable system. A comparison with our general transformed Hamil- 
tonian yields the integrability conditions: 

with the reduced masses 1/pV = l / m ,  + l / m j .  For the choice e l  = m,  = 1 this results in 

m3 m 4 = 2 -  
3 - m ,  1 - m ,  

m2(1+ m2) m3 = 

e2 = ( 1  + m,) /2  e3 = 2( 1 + m , ) / ( 3  - 111,) E 4 =  ( 1  % ) / ( I  - m2) W . 3 )  
with m2 E ( 0 , f ) .  
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